Home Up exploratory analysis planning and conducting a study probability statistical inference NSpire

 

Course Content Overview  
http://media.pearsoncmg.com/aw/aw_bock_statsmodel_3/cw/TI_Activities/NSpire_Intro_Guide.pdf

The topics for AP Statistics are divided into four major themes: exploratory analysis (20–30 percent of the exam), planning and conducting a study (10–15 percent of the exam), probability (20–30 percent of the exam), and statistical inference (30–40 percent of the exam).  

I. Exploratory analysis of data makes use of graphical and numerical techniques to study patterns and departures from patterns. In examining distributions of data, students should be able to detect important characteristics, such as shape, location, variability, and unusual values. From careful observations of patterns in data, students can generate conjectures about relationships among variables. The notion of how one variable may be associated with another permeates almost all of statistics, from simple comparisons of proportions through linear regression. The difference between association and causation must accompany this conceptual development throughout.  

Excel Worksheets with Populations and ALL possible samples
http://www.statland.org/Sampling_Example/

II. Data must be collected according to a well-developed plan if valid information is to be obtained. If data are to be collected to provide an answer to a question of interest, a careful plan must be developed. Both the type of analysis that is appropriate and the nature of conclusions that can be drawn from that analysis depend in a critical way on how the data was collected. Collecting data in a reasonable way, through either sampling or experimentation, is an essential step in the data analysis process.

 Probability is the tool used for anticipating what the distribution of data should look like under a given model. Random phenomena are not haphazard: they display an order that emerges only in the long run and is described by a distribution. The mathematical description of variation is central to statistics. The probability required for statistical inference is not primarily axiomatic or combinatorial but is oriented toward using probability distributions to describe data.  

IV. Statistical inference guides the selection of appropriate models. Models and data interact in statistical work: models are used to draw conclusions from data, while the data are allowed to criticize and even falsify the model through inferential and diagnostic methods. Inference from data can be thought of as the process of selecting a reasonable model, including a statement in probability language, of how confident one can be about the selection.