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Geometric Approaches to 
Quadratic Equations from 
Other Times and Places

Patricia R. Allaire and Robert E. Bradley

s mathematics evolves, the techniques that survive
are those that have the greatest power and general-
ity. The reason that we teach symbolic algebraic
manipulation has everything to do with its efficien-
cy and nothing to do with the historical develop-
ment of the problems being solved.

We can consider the following problem: 

A field has a perimeter of 40 yards and an area
of 96 square yards. What are the dimensions of
this field?

A modern solution would involve two variables,
one of which is eliminated to derive the quadratic
equation

x2 – 20x + 96 = 0.

This equation is then solved by factoring or by
using the quadratic formula.

This procedure would seem arbitrary to someone
who did not know modern algebraic techniques.
The skills involved, that is, representing quantities
by letters and performing algebra on these symbols,
seem to have little relevance to the practical prob-
lem of finding the dimensions of a physical object.
We teach these skills because of their broad applic-
ability not only to quadratic problems but also to
linear and cubic problems, as well as to problems
involving rational functions, square roots, and more
complicated forms.

In this article, we concentrate exclusively on
quadratic problems, that is, on problems whose
twentieth-century solution involves setting up a
quadratic equation in one unknown. Before symbol-
ic manipulation became the lingua franca of mathe-
matics, mathematicians could solve quadratic prob-
lems. Their techniques usually involved some
geometric feature of the situation.

Even if we admit the greater efficiency of the
symbolic approach, many good reasons remain for
studying geometric solutions of the quadratic. For
those who are visually, as opposed to symbolically,
oriented, studying geometric solutions can make
both the problems themselves and the algebra

involved more meaningful. Even those who are
comfortable with a symbolic conception of algebra
will probably find different points of view to be
enriching. In addition, a historical survey of geo-
metric techniques can be used to introduce both
completing the square—it even explains the origin
of the name—and deriving the quadratic formula.
Finally, our classroom experience suggests that a
historical approach always makes the subject more
appealing to the typical student.

What follows is a collection of geometric tech-
niques from ancient Babylonia, classical Greece,
medieval Arabia, and early modern Europe that
can enhance the quadratic-equation portion of an
algebra course. The purpose is not to replace the
symbolic approach but to offer alternative perspec-
tives. Although the topics are interrelated, teachers
do not need to present all of them. Rather, we
encourage teachers to sample and experiment with
as many techniques as seem appropriate to the
teaching schedule and the interests and abilities of
the students.

GEOMETRICAL ALGEBRA
Geometrical algebra is the branch of mathematics
that is concerned with using geometrical concepts
and proofs as the underpinnings of algebraic tech-
niques. Although the ideas of geometrical algebra
were clearly present in Asia, Mesopotamia, and
Egypt centuries earlier, classical Greek mathemati-
cians are usually credited with its development.
When we geometrically solve a quadratic equation,
we are doing geometrical algebra.

In the world of geometrical algebra, simple quan-
tities, whether fixed numbers or unknowns, are
represented by physical objects, almost always a
line segment whose length, relative to some fixed
unit, is the quantity in question. A product of two
quantities is thus interpreted as the area of a rec-
tangle, and a product of three quantities is inter-
preted as the volume of a right rectangular prism.
This interpretation is the origin of our use of the
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words square and cube for second and third powers.
Because lengths, areas, and volumes are positive
quantities, geometrical algebra deals exclusively
with positive numbers and positive values of
unknowns. Figure 1 is an example of geometrical
algebra, illustrating the identity

(a + b)2 = a2 + 2ab + b2

for positive a and b, and the figure could even be
called a proof of the identity.

the following property: when a square of side x is
added to a rectangle with sides of length 5 and x,
the result is a rectangle with an area of 36 square
units.
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algebra
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Fig. 1
An example of geometrical algebra:
the identity (a + b)2 = a2 + 2ab + b2.

A generalization of this figure can be used to
illustrate the FOIL technique for multiplying two
binomials. The following example is illustrated in
figure 2:

(x + 3)(x + 2) = x2 + 2x + 3x + 6
= x2 + 5x + 6
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Fig. 2
(x + 3)(x + 2) = x2 + 2x + 3x + 6

              = x2 + 5x + 6.

The fact that geometrical algebra deals only with
positive quantities has certain implications for the
way that quadratic problems are set up. For exam-
ple, if we want to solve the equation x2 + 5x – 36 = 0
geometrically, we must consider instead the form
x2 + 5x = 36, shown in figure 3. If we read this
equation geometrically, it asks for a quantity x with

5x 36=x2

Fig. 3
x2 + 5x = 36.

CLASSIFICATION OF 
QUADRATIC EQUATIONS
If we divide a quadratic equation by the coefficient
of x2, the equation assumes the form x2 + bx + c = 0.
However, since geometrical algebra by its nature
requires that coefficients and roots be positive, we
must work by cases when solving them geometri-
cally. The five possible cases in which b and c are
always positive are the following: 

(1) x2 = bx
(2) x2 = c
(3) x2 = bx + c
(4) x2 + c = bx
(5) x2 + bx = c

Because zero is not an acceptable solution in geo-
metrical algebra, x = b is the only solution in case
(1). In case (2), the positive square root of c is the
only solution; it must be constructed in a geometri-
cal sense before we can claim to solve this problem
geometrically. We turn our attention to this con-
struction before considering cases (3), (4), and (5).

CONSTRUCTION OF √√c
In The Elements, written about 300 B.C., Euclid
expressed virtually all his mathematical reasoning
in a geometrical way. This work is a compilation of
the basic mathematics of the Greeks beginning
with Thales (ca. 625–547 B.C.). The construction
shown in figure 4 is seen in The Elements (II.14).
We can construct a line segment, the length of
which is the square root of the length of an arbi-
trary line segment, given that segment and a seg-
ment of unit length, as follows:

• Construct AB with AB = c.
• Extend AB through B to C so that BC = 1.
• Bisect AC at M.
• With center M and radius AM, construct a 

semicircle.
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• Erect a perpendicular to AC at B. Label as E the
point at which the perpendicular intersects the
semicircle. Then BE = ¡c.

See figure 4.

tion in figure 5 as an “application of areas”?
The term bx in equation (3) represents the area

of a rectangle. We are given the line segment b in
the setup of the problem. We “apply an area” to b
when we erect perpendiculars of length x on it and
complete a rectangle. Since the perpendiculars
have length x, the applied area is bx.

To show that x2 = bx + c, we must show that this
rectangle, along with another rectangle with area c,
makes a square of side x, whose area is x2. See fig-
ure 6, in which AB has the given length b, and AD
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believed 
to have 

originated
with
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or his school

¡c

Fig. 4
Constructing a line segment, 

the length of which is the square root of 
an arbitrary line segment
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We next demonstrate that this construction gives
the desired length by showing that triangles BCE
and BEA are similar, although Euclid did not use
the following method of proof:

• ∠ EBC and ∠ EBA are right angles by construc-
tion and are therefore congruent.

• ∠ CEA is a right angle because it is inscribed in a
semicircle.

• ∠ C and ∠ BEA are both complementary to
∠ CEB, so they are congruent.

• Thus, the triangles are similar.

Since
BC = BE ,
BE BA
1 = BE ,

BE `c`

we obtain BE2 = c by cross multiplying. Therefore,
BE = ¡c.

APPLICATION OF AREAS
The classical Greek method for solving quadratics
of types 3, 4, and 5 is called application of areas
and is believed to have originated with Pythagoras
(ca. 572–497 B.C.) or his school. We illustrate the
technique as applied to case 3, x2 = bx + c; see 
figure 5.

• Construct AB with AB = b.
• Erect a perpendicular, CB, to AB, with CB = ¡c.
• Bisect AB at M.
• With center M and radius MC, construct a circle.
• Label as D the point where the circle meets the

extension of AB through B. Then x = AD.

A geometric justification for application of areas
Why did the ancient Greeks refer to the construc-
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Fig. 5
Application of areas:

x2 = bx + c.
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Application of areas
(Figure 5 is in color)
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has the constructed length x. We erect perpendicu-
lars AE and DG, both of length x, to make a square
ADGE of area x2. Since rectangle ABFE has area
bx, we need to show that rectangle BDGF has area
c. By construction, MD = MC (C on FB ). Therefore,
a square on MD, such as MDHJ, has the same area
as a square on MC, such as square (3).

By the Pythagorean theorem, the sum of the
areas of square (1) (MBLK) and square (2) is equal
to the area of square (3), which itself is equal to
the area of MDHJ. Therefore, if we subtract
square MBLK from square MDHJ, the remaining
piece has the same area as square (2), which is c,
by construction.

Thus, the reverse L-shaped figure BDHJKL,
shown shaded in figure 6, has area c. By picking
up the rectangle JKLN and moving it to the con-
gruent rectangle NHGF, we have shown that rec-
tangle BDGF does indeed have area c, which is the
result that we wanted.

THE BABYLONIAN SOLUTION 
OF A QUADRATIC EQUATION
The scribes of ancient Babylonia—an area included
in modern-day Iraq—were proficient mathemati-
cians. Extensive archaeological records indicate
their achievements in the early second millennium
B.C., particularly around the time of Hammurabi,
about 1700 B.C. They could solve a variety of qua-
dratic problems, the simplest being of the following
form: if the sum of two numbers is 20 and the prod-
uct is 96, then what are these numbers?

This problem is a disguised version of the prob-
lem about perimeter and area that we have already
encountered. When the two numbers represent the
lengths of the sides of a rectangle, their sum is the
semiperimeter. If two numbers x and y have a sum
of b and a product of c, then by substituting y = b – x
in the product xy = c, we have

x2 + c = bx.

So this problem is of type (4); any problem of type
(4) can be posed in the language of areas and semi-
perimeters, or sums and products.

The Babylonians would have solved this prob-
lem by first guessing that x equals 10 and y equals
10. Since we know that x and y must sum to 20,
this guess is certainly reasonable. However, it can-
not be correct, because a square of 10 yards on
each side would have an area of 100 square yards.
One approach is to subtract the correct area of 96
from this value of 100, giving a difference of 4
square yards. Next we take the square root of 4,
which can be found geometrically, and add it to x.
So x = 10 + 2, or 12. We take the same value, 2, and
subtract it from y. So y = 10 – 2, or 8. We know that
this answer is correct, since x + y = 12 + 8, or 20,
and xy = 12 × 8, or 96.

This solution apparently does not involve any
geometry. The Babylonian scribes did not use pic-
tures to solve this problem. Instead, they used a
simple rhetorical algorithm that involves manipu-
lating the numbers 20 and 96 to obtain the dimen-
sions. See figure 7.

1. Divide the sum S in half. S/2
2. Square the answer from part 1. (S/2)2

3. Subtract the product A from the result (S/2)2 – A
in part 2.

4. Take the square root of the result in ¡~S/2_[̀ –̀ A
part 3.

5. Add the answer in part 4 to the answer S/2 + ¡~S/2_[̀ –̀ A
in part 1 to determine one dimension
of the field.

6. Subtract the answer to part 4 from the S/2 – ¡~S/2_[̀ –̀ A
answer to part 1 to determine the other
dimension of the field.

Fig. 7
Babylonian algorithm
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b/2 – z
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Fig. 8
A geometric justification

z
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A geometric justification is given in figure 8: a
square of side b/2 has the desired semiperimeter b.
The value (b/2)2 exceeds the desired area by the
quantity (b/2)2 – c, which is the area of the unshad-
ed square of side z at the upper left. The remaining
shaded figure can be reassembled into a rectangle
as indicated. The dimensions of the rectangle are

x = b +�b2
– c

2 4̀̀
and 
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y = b –�b2
– c .

2 4̀̀

This procedure is practically a derivation of the
quadratic formula. Because the equation that we
have solved is x2 – bx + c = 0 when put in standard
form, no negative sign appears in front of the b/2
term.

AL-KHWARIZMI AND 
COMPLETING THE SQUARE
In the ninth century, Muhammad ibn Musa al-
Khwarizmi (ca. 780–850) wrote one of the first
Islamic algebra books, The Calculation of al-Jabr
and al-Muqabala. The expression al-jabr in the
title is the source of our word algebra. In this book
on solving equations, al-Khwarizmi gave detailed
explanations of the solutions of quadratic equations.

Islamic mathematics at the time of al-Khwarizmi
did not accept negative numbers as either co-
efficients or roots; another three hundred years
passed before al-Samaw’al introduced negative
coefficients. Thus, algebraic solutions had to be
done by cases, as we did in solving geometrically. In
fact, the cases that we previously listed are those
listed by al-Khwarizmi.

Al-Khwarizmi and the Islamic mathematicians
used the method that we call completing the square
for cases (3), (4), and (5). They used a geometric
demonstration to show why this algebraic method
makes sense. We can see their method applied to 
x2 + 10x = 39, an equation of type (5):

• Begin with a square of area x2, that is, with 
side x.

• Add two rectangles, each having one side 10/2, or
5, and the other side x.

• The total shaded area is x2 + 2(5x), or x2 + 10x,
which is the expression on the left side of the
equation. The total area is therefore 39.

• In figure 9, the upper-right corner is a square
with side 5, or area 25. By adding this small
square to the diagram, we “complete the square”
and have a large square with area of x2 + 2(5x) +
25. Since we have added 25 to the original area
of 39, the area of this large square is 64, and we
can write

x2 + 10x + 25 = 64.

• Since the side of the large square has length x + 5,
its area is (x + 5)2. Therefore, 

(x + 5)2 = 64,
x + 5 = 8,

x = 3.

Since the discussion has been in the form of geo-
metric algebra, the process confirms only the posi-
tive value of x.

DESCARTES’S CONSTRUCTION
In the seventeenth century, in the first book of La
Géometrie, René Descartes (1596–1650) described a
geometric method for constructing the solution of
the quadratic equation x2 + bx = c. Despite its asso-
ciation with Descartes, this construction does not
use Cartesian axes; like earlier ones, it shows the
positive root only. The construction is performed as
follows:

• Construct AB with AB = ¡c.
• Erect a perpendicular, AC, to AB, with AC = b/2.
• Construct a circle that has center C and radius

AC.
• Construct a line through B and C, intersecting

the circle at E and D. Then x = BE.

See figure 10.

x 5

5

Fig. 9
Adding the small white square to the

diagram “completes the square,”
giving x2 + 10x + 25 = 64.

¡c
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x
b/2

Fig. 10
Descartes’s construction

We can justify x = BE by the tangent-secant the-
orem or, algebraically, by the Pythagorean theorem
applied to triangle ABC.

For students who know the tangent-secant theo-
rem—which states that if a tangent and a secant
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are drawn to a circle from an outside point, the
length of the tangent is the mean proportional
between the length of the secant and the length of
the external segment—the verification that x = BE
is as follows:

BD = AB
AB BE

x + b = ¡c
¡c x

By cross multiplication, we find that x(x + b) = (¡c )2,
or x2 + bx = c.

An algebraic alternative to this demonstration
can be given using the Pythagorean theorem. By
construction, triangle ABC is a right triangle.
Hence,

CB2 = AC2 + AB2,

�x + b�
2

= �b�
2

+ (¡c )2,
2 2

x2 + bx + b2
= b2

+ c,
4̀̀ 4̀̀

x2 + bx = c.

Descartes’s construction can be used to solve 
x2 = bx + c, in which case x = DB. We note the simi-
larity between the latter construction and the solu-
tion of this equation by application of areas.

CARLYLE’S METHOD
Although Descartes’s method does not use Cartesian
coordinates, the following procedure, devised by
Thomas Carlyle (1775–1881), does so. This con-
struction solves the equation x2 + bx + c = 0 for all
real values of b and c; in addition, it shows when
solutions are nonreal.

• On graph paper, plot the points A(0, 1) and 
B(–b, c).

• Bisect AB at M.
• Construct a circle with center M and radius AM.

• Label as P and Q the points where the circle
intersects the x-axis.

See figure 11.
The directed lengths OP and OQ represent the

solutions of the equation. The verification involves
coordinate geometry that uses the facts that the
circle has radius AB/2; its center is the midpoint of
AB; and for any solution x of the equation, (x, 0) lies
on the circle. 

By choosing different values of (–b, c), we can
draw examples where the circle intersects the x-axis
at two points, tangentially at one point, or not at
all. These results will occur when the radius is,
respectively, greater than, equal to, or less than the
distance between the center of the circle and the 
x-axis, that is, |c – 1| /2.

The derivation of this condition, as well as its
equivalence to the familiar test involving the sign
of the discriminant b2 – 4c, may not be engaging to
most second-year algebra students. However, stu-
dents can experiment with different values of b and
c and come to appreciate the relationship between
the coefficients of a quadratic and the number of
solutions. Since we began by dividing by a, the rela-
tionship really does involve all three coefficients.
This experiment can introduce a discussion of the
discriminant, in which the precise nature of that
relationship is developed.

A justification of Carlyle’s method
If r is the radius of the circle in figure 11, then 
r = AB/2. Therefore,

r = 1 ¡~–b̀ –̀ 0_[̀ +̀ ~c̀ –̀ 1_[
2

= ¡b[̀ +̀ ~c̀ –̀ 1_[.
`̀ `̀ 2̀̀ `̀ `̀

The center of the circle is the midpoint of AB:

�–b, c + 1�.2̀̀ `̀ 2̀ `

If (x, 0) is a point lying on the circle having this
radius and center, then

�x – –b�
2

+ �0 – c + 1�
2

= r2,
2̀̀ `̀ 2̀ `

�x + b�
2

+ �c + 1�
2

= b2 + (c – 1)2
,

2 `̀ 2̀ ` `̀ `̀ 4̀̀ `̀ `̀

�x + b�
2

= b2 + (c – 1)2 – (c + 1)2
,

2 ````````4````````

�x + b�
2

= b2 – 4c,
2 `̀ 4̀̀ `̀

x2 + bx + b2
= b2

– c,
4̀̀ 4̀̀

x2 + bx + c = 0.

x

r

Fig. 11
Carlyle’s method

O

y

P Q

A(0, 1)

B(–b, c)

M

�–b, c+1�2 2

(Continued on page 319)
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meets the definition of a parallelogram (Varignon
[1731] 1972, pp. 62–63).

When the Varignon parallelogram appears as a
practice exercise in present-day geometry text-
books, students are sometimes asked to show that
its opposite sides are congruent, each side having
half the length of the diagonal to which it is paral-
lel. However interesting these pairs of congruences
may be, they are not essential for establishing that
the figure is a parallelogram.

The parallelogram theorem gives evidence of the
lucidity and craftsmanship of the gifted teacher for
whom it is named.

A future article in the Mathematics Teacher will
examine some implications of Varignon’s theorem
and suggest exercises for exploratory inquiry and
deduction.
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