7_2 Praction

Form G

Properties of Exponential Functions

Graph each function.

1.
$$y = 2^x$$

3.
$$y = 5^x$$

5.
$$y = \left(\frac{1}{5}\right)^x$$

Graph each function as a transformation of its parent function.

7.
$$y = 2^{x+1}$$

9.
$$y = 5^{-x}$$

11.
$$y = 2(2)^{x+2}$$

- **13.** A cake is 190°F when you remove it from the oven. You must let it cool to 75°F before you can frost it. The table at the right shows the temperature readings for the cake.
 - **a.** Given a room temperature of 68°F, what is an exponential model for this data set?
 - **b.** How long must the cake cool before you can frost it?

Use the graph of $y = e^x$ to evaluate each expression to four decimal places.

15.
$$e^{-2.5}$$

	Time (min)	Temp (°F)
	0	190
`	5	149
	10	122
	15	104
	20	92

Name	Class	Date	
------	-------	------	--

7-2

Practice (continued)

Form G

Properties of Exponential Functions

Find the amount in a continuously compounded account for the given conditions.

17. principal: \$5000

annual interest rate: 6.9%

time: 30 yr

19. How long would it take to double your principal at an annual interest rate of 7% compounded continuously?

21. The isotope Hg-197 is used in kidney scans. It has a half-life of 64.128 h. After that time, half the isotope will have decayed. Write the exponential decay function for a 12-mg sample. Find the amount remaining after 72 h.

- 23. Suppose you invest \$2000 at an annual interest of 5.5% compounded continuously.
 - **a.** How much will you have in the account in 10 years?
 - **b.** How long will it take for the account to reach \$5000?

The parent function for each graph below is of the form $y = ab^x$. Write the parent function. Then write a function for the translation indicated.

25

translation: right 3 units, up 1 units