4-2

Practice

Form G

Standard Form of a Quadratic Function

Identify the vertex, the axis of symmetry, the maximum or minimum value, and the range of each parabola.

1.
$$y = x^2 - 4x + 1$$

2.
$$y = -x^2 + 2x + 3$$

3.
$$v = -x^2 - 6x - 10$$

4.
$$y = 3x^2 + 18x + 32$$

5.
$$y = 2x^2 + 3x - 5$$

6.
$$y = -3x^2 + 4x$$

Graph each function.

7.
$$y = x^2 + 2x - 5$$

8.
$$y = -x^2 + 3x + 1$$

9.
$$y = 2x^2 + 4x - 4$$

10.
$$y = -\frac{1}{2}x^2 - 3x + 3$$

11.
$$y = 3x^2 - 8x$$

12.
$$y = -3x^2 + 18x - 27$$

Write each function in vertex form.

13.
$$y = x^2 - 8x + 19$$

14.
$$y = x^2 - 2x - 6$$

15.
$$y = x^2 + 3x$$

16.
$$y = 2x^2 + x$$

17.
$$y = 2x^2 - 12x + 11$$

18.
$$y = -2x^2 - 4x + 6$$

4-2

Practice (continued)

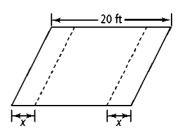
Form G

Standard Form of a Quadratic Function

- **19.** A small independent motion picture company determines the profit P for producing n DVD copies of a recent release is $P = -0.02n^2 + 3.40n 16$. P is the profit in thousands of dollars and n is in thousands of units.
 - a. How many DVDs should the company produce to maximize the profit?
 - **b.** What will the maximize profit be?

Sketch each parabola using the given information.

20. vertex
$$(4, -2)$$
, *y*—intercept 6


21. vertex
$$(-3, 12)$$
, point $(-1, 0)$

For each function, the vertex of the function's graph is given. Find the unknown coefficients.

22.
$$v = x^2 + bx + c : (-4, -7)$$

23.
$$v = ax^2 - 10x + c$$
; (-5, 20)

- **24.** A local nursery sells a large number of ornamental trees every year. The owners have determined the cost per tree C for buying and caring for each tree before it is sold is $C = 0.001n^2 0.3n + 50$. In this function, C is the cost per tree in dollars and n is the number of trees in stock.
 - **a.** How many trees will minimize the cost per tree?
 - **b.** What will the minimum cost per tree be?
- **25.** To line an irrigation ditch, a farmer will use rectangular metal sheets. Each side will be bent x feet from the edge at an angle of 90° to form the trough. If the sheets are 20 ft wide, how far from the edge (x) should the farmer bend them to maximize the area of a cross-section of the trough.

For each function, find the y-intercept.

26.
$$y = (x + 3)^2 - 5$$

27.
$$y = -2(x-2)^2 + 6$$

28.
$$y = -(x+1)^2 + 9$$

29.
$$y = \frac{1}{2}(x+4)^2 - 15$$