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When the points in a scatterplot exhibit a linear pattern and the residual plot does not 
reveal any problems with the linear fit, the least-squares line is an appropriate way to 
summarize the relationship between x and y. A linear relationship is easy to interpret, 
departures from the line are easily detected, and using the line to predict y from our 
knowledge of x is straightforward. Often, though, a scatterplot or residual plot exhibits a 
curved pattern, indicating a more complicated relationship between x and y.   Despite the 
greater complication, the general ideas of nonlinear fits are the same as you have 
experienced with straight line fits: 
 

What you have done with 
straight line fits 

What you will do with 
non-straight line fits 

 
Capture linear relationships using  
a linear function 

Capture nonlinear relationships 
using a non-linear function 

Predict the value of a response 
variable, informed by the value of 
an explanatory variable 

Predict the value of a response 
variable, informed by the value of 
an explanatory variable 

Assess whether the linear function 
is an appropriate summary 
description of the data, using 
residual plots 

Assess whether the non-linear 
function is an appropriate summary 
description of the data, using 
residual plots 

 
A data analyst might decide to use nonlinear fits for one of two different reasons.  First, 
inspections of a scatterplot and residual plot may indicate a clear non-linear pattern, one 
which could be more effectively summarized using a non-linear elementary mathematical 
function from algebra.  As we will soon see, we have a variety of elementary functions to 
choose from.   Second, the scientific community may have settled on the nature of the 
relationship between x and y, and the data analysis task is only to estimate the parameters 
of the function by finding the nonlinear best-fit curve.  In the description to follow, it will 
be convenient to separate non-linear fits into 2 general categories:  (1) those fits 
accomplished using polynomial functions, and (2) those fits accomplished using what are 
known as transformations of variables.   
 
Polynomial regression 

 
In the article “Quantifying spatiotemporal overlap of Alaskan brown bears and people” 
(Journal of Wildlife Management [2005]: 810-817), the investigators were concerned 
about human activity in the presence of foraging bears. Their specific concern was that 
sport fishing and boating might be displacing bears from sufficient access to salmon due 
to the presence of humans and their loud watercraft.  Part of their research involved 
documenting the fishing activity of brown bears (Ursus arctos) through time.  
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Figure 1 

  
 

Date 
(June 1 = 1) 

Bear usage 
Bear-hr/day 

Date 
(June 1 = 1) 

Bear usage 
Bear-hr/day

Date 
(June 1 = 1) 

Bear usage 
Bear-hr/day

11 11.3 24 11.3 40 22.0 
12 15.1 25 18.4 41 26.0 
13 6.6 27 16.2 44 10.5 
14 12.9 28 19.5 45 18.6 
15 12.1 31 35.8 46 21.1 
17 18.1 32 37.1 49 11.9 
18 20.9 33 45.7 50 13.7 
19 17.6 36 34.8 51 13.7 
20 11.0 37 25.6 54 6.3 
21 24.6 38 26.7 55 1.8 

 
The scatterplot in the Figure displays the 
relationship between bear usage (bear-
hours / day) and date (in days, 1 = June 1st) 
in 2003 at Wolverine Creek and Cove, 
Alaska.    
It is immediately clear from the pattern of 
points that no best-fit line can do a 
reasonable job of describing the 
relationship between x and y.  The points 
in the scatterplot appear to rise, level off 
near day 30 (June 30), and then fall as the 
days move through the month of July.  It 
seems clear that the relationship between 
the amount of bear usage of Wolverine 
Creek and Cove and time is more complex than is captured by a linear relation.  The 
interpretation of the slope of a best fit line is that as the explanatory variable changes by 1 
unit, on average the response variable changes by a constant amount equal to the slope of 
the best-fit line.  It does not appear from these data that a constant average increase in 
bear usage exists.  Rather, it appears that the change in the y variable varies with x; that 
is, the amount of change in y per unit change in x is a function.   
 
Quadratic functions, of course, exhibit this rise / level off / fall sort of appearance.  It 
would seem that a quadratic function of the form 2

1 2ŷ a b x b x    is a more reasonable 

description of the pattern of points than a straight-line model.  That is, the values of the 
coefficients 1 2,  ,  and a b b  in this function must be selected to obtain a good fit to the data.  

(Note that the choice of the symbols for the coefficients is consistent with straight-line 
relationships, not with the typical algebraic description of a quadratic function, 

  2y f x ax bx c    .)    As is true of linear functions, algebra will enable one to 

initially interpret the graph and coefficients of a quadratic function: 
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 The sign of the coefficient of the quadratic term, 2b , indicates whether the 

quadratic curve opens up or down 

 The extreme (maximum in this case) value occurs where 1

22

b
x

b
   

 The extreme (maximum in this case) value is 1

22

b
y f

b

 
  

 
 

 
What are the best choices for the values of 1 2,  ,  and a b b ?  In fitting a line to data, we 

used the principle of least squares to guide our choice of slope and intercept.  Least 
squares can be used to fit a quadratic function as well.  The deviations, ˆ,y y are still 
represented by vertical distances in the scatterplot, but now they are vertical distances 
from the points to a parabola (the graph of a quadratic function) rather than to a line, as 
shown in Figure 2.  We then choose values for the coefficients in the quadratic function 
so that the sum of squared deviations is as small as possible. 
 

                             
                                                       Figure 2 
 
 
 
 
 
 
 
 

For quadratic regression, a measure that is useful for assessing fit is 2 SSResid
1

SSTo
R    

where  2
ˆResidSS y y  . The measure R2 is defined in a way similar to r 2 for 

simple linear regression and is interpreted in a similar fashion. The notation r 2 is used 
only with linear regression to emphasize the relationship between r 2 and the correlation 
coefficient, r, in the linear case.  The general expressions for computing the least-squares 

For a quadratic regression, the least squares estimates of a, b1 and b2 are those 

values that minimize the sum of squared deviations, 2ˆ( )y y , where 

2
1 2ŷ a b x b x   . 
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Figure 4(b): Quadratic residuals 
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Figure 3: Quadratic regression 

estimates are somewhat complicated, so we must rely on a statistical software package or 
graphing calculator to do the computations for us.   
 
Part of the Minitab output from fitting a quadratic regression to these data is shown in 
Figure 3: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The least squares coefficients are: 1 220.9671      2.9958     0.0463a b b     , and the 

least squares quadratic equation is:  2ˆ 20.9671 2.9958 0.0463y x x    . 
 
If a least-squares line is fit to these data, it is not surprising that the line does not do a 
good job of describing the relationship ( 2 0.000001,  and 10.099er s  ).  Both the 

scatterplot and the residual plot show a distinct curved pattern.  A plot showing the curve 
and the corresponding residual plot for the quadratic regression are given in Figure 4 
below.  Notice that there is no strong pattern in the residual plot for the quadratic case, as 
there was in the linear case.  For the quadratic regression, 2 0.556R  (as opposed to 
essentially zero for the least squares line).  This means that 55.6% of the variability in the 
bear prevalence can be explained by an approximate quadratic relationship between bear 
prevalence and date of observation. 
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Figure 4(a): Quadratic regression 
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Linear regression and quadratic regression are special cases of polynomial regression. A 
polynomial regression curve is described by a function of the form: 
 
              2 3

1 2 3ˆ ... k
ky a b x b x b x b x      . 

 
Recall that   2 3

1 2 3 ... k
kp x a b x b x b x b x      is referred to as a kth degree 

polynomial. The case of k = 1 results in linear regression ( 1ŷ a b x  ) and k = 2 yields a 

quadratic regression ( 2
1 2ŷ a b x b x   ).  A quadratic curve has only one bend (see 

Figure 5(a) below.)  
 
A less frequently encountered special case is for k = 3, where 2 3

1 2 3ŷ a b x b x b x    , 

which is called a cubic regression curve. While quadratic curves have  only a single bend, 
cubic curves tend to have two bends, as shown in Figure 5(c) below. 
 

 
Figure 5 

 
A cubic fit was performed in the article, “Perceiving musical time”  (Music Perception: 
An Interdisciplinary Journal [1990]:213-251).  Twenty-three experienced music 
researchers and composers were asked to listen to a solo piano piece, comprised of 18 
segments.  The piece was described in the article as “…atonal with a pitch structure 
organized according to the principles of 12-note serialism…based on proportions derived 
from the Fibonacci series.”  Their data for the 18 segments are shown below: 
 

Actual 
Location 

Estimated 
Location 

Actual 
Location 

Estimated 
Location 

Actual 
Location 

Estimated 
Location 

0.84 0.84 0.51 0.54 0.23 0.27 
0.81 0.76 0.48 0.39 0.21 0.24 
0.79 0.50 0.45 0.44 0.18 0.27 
0.71 0.51 0.28 0.56 0.17 0.20 
0.68 0.49 0.28 0.41 0.15 0.10 
0.65 0.53 0.24 0.24 0.12 0.03 
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Figure 6: Music scatterplot 
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Figure 7(a): Quadratic fit 
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Figure 8(a): Cubic fit 

After listening to the piece twice, the musicians were given copies of different sections of 
the musical score and asked to locate the relative position of the segments in the piece.  
As an example, if the musician thought a section of music occurred three-fourths of the 
way through the piece, he or she would indicate 0.75.   The “Estimated Location” is the 
median of the values given by the subjects in the study. 
 
Figure 6 presents a scatterplot of these data.  The 
relationship between x and y does not appear to be 
linear – it seems to have a bend in it.  In the light of 
this, one might try using a quadratic regression to 
describe the relationship between the estimated and 
actual relative positions of the sections of the musical 
piece.  JMP was used to fit a quadratic regression 
function and to compute the corresponding residuals.  
The least-squares quadratic regression is: 

2ˆ 0.0244 1.1523 0.4657E A A    
 
A plot of the quadratic regression curve and the corresponding residual plot are shown in 
Figure 7.  Notice that the residual plot in Figure 7(b) has brought out a pattern we didn’t 
notice in the scatterplot before.  This capability of residual plots to bring out the worst in 
graphs is one of the reasons we use them.  In this case the residual plot shows a curved 
pattern between the residuals and x – not something we like to see in a residual plot!   
Looking again at the scatterplot of Figure 6, we see that a cubic function might be a better 
choice than the quadratic function; assisted by the residual plot, we now see what appears 
to be two “bends” in the curved relationship – one at around x = 0.3  and another around  
x = 0.7.   
 
JMP was used to fit a cubic regression, resulting in the curve shown in Figure 8(a).  The 

cubic regression is: 2 3ˆ 0.6284 6.959 14.3823 9.6594E A A A     . 
 
The cubic regression report and the corresponding residual plots for the quadratic and 
cubic fits are shown below.  The plots of the cubic fits do not reveal any troublesome 
patterns that would suggest we need to consider a choice other than cubic regression.  
And other good news is that 2R has increased to 0.88, also suggesting the cubic fit is 
better than the quadratic. 
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Figure 7(b): Quadratic residual plot
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Figure 8(b): Cubic residual plot 

 
 The investigators’ inspection of the original scatterplot suggested to them that the 
subjects’ judgments of the relative positions of the musical segments were fairly close to 
the actual positions at the beginning and end of the musical piece, but not so in the 
middle.  They felt this might be due to a greater sense by the subjects of musical progress 
in the beginning and near the end of the piece, whereas the central part of the piece is 
“something of a mixture, where different ideas are combined and juxtaposed, so that the 
sense of goal-directed musical progress is weakened.”   
 
 
Transformations 
 
In general, our strategy for performing nonlinear fits using transformations is to find a 
way to transform the x and/or y values so that a scatterplot of the transformed data has a 
linear appearance. A transformation (sometimes called a re-expression) involves using a 
simple function of a variable in place of the variable itself. For example, instead of trying 
to describe the relationship between x and y, it might be easier to describe the relationship 

between x  and y or between x and log(y). And, if we can describe the relationship 

between, say, x  and y, we will still be able to predict the value of y for a given x value.  
In addition, the interpretation of the slope is not only possible but reasonable.   Common 
transformations involve taking square roots, logarithms, or reciprocals.  To introduce you 
to the mechanics of using transformations, we will consider a square root transformation. 
 
River Water Velocity and Distance from Shore 
 
As fans of white-water rafting know, a river flows more slowly close to its banks 
(because of friction between the river bank and the water). To study the nature of the 
relationship between water velocity and the distance from the shore, data were gathered 
on velocity (in centimeters per second) of a river at different distances (in meters) from 
the bank. Suppose that the resulting data were as follows: 
 
Distance      .5    1.5    2.5    3.5    4.5    5.5    6.5    7.5    8.5    9.5 
Velocity  22.00  23.18  25.48  25.25  27.15  27.83  28.49  28.18  28.50  28.63  
 



9 
 

A graph of the data exhibits a curved pattern, as seen in both the scatterplot and the 
residual plot from a linear fit (see Figures 9(a) and 9(b)). 

                                                   Figure 9:  Plots for the data 
                   (a) scatterplot of the river data; (b) residual plot from linear fit. 
 
Let’s try transforming the x values by replacing each x value by its square root. We 
define 
 

 'x x  
 
The resulting transformed data are given in Table 1 below. 
 

 Table 1:  Original and transformed data of the river velocity 
    Original Data     Transformed Data 

  x             y            x'      y 
  .5   22.00   0.7071   22.00  
1.5   23.18   1.2247   23.18  
2.5   25.48   1.5811   25.48  
3.5   25.25   1.8708   25.25  
4.5   27.15   2.1213   27.15  
5.5   27.83   2.3452   27.83  
6.5   28.49   2.5495   28.49  
7.5   28.18   2.7386   28.18  
8.5   28.50   2.9155   28.50  
9.5   28.63   3.0822   28.63  
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The regression equation is
Velocity = 20.1 + 3.01 SqrDist 
 
 
Predictor     Coef  SE Coef      T      P 
Constant   20.1102   0.6097  32.99  0.000 
SqrDist     3.0085   0.2726  11.03  0.000 
 
 
S = 0.629237   R-Sq = 93.8%   R-Sq(adj) = 93.1% 
 

Figure 11 

Figure 10(a) shows a scatterplot of y versus x' (or equivalently y versus x ). The pattern 
of points in this plot looks linear, and so we can fit a least-squares line using the 
transformed data.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10:  Plots for the transformed river data: 
(a) scatterplot of y versus x'; (b) residual plot 

 
 
Minitab output from this regression is shown below.  The residual plot in Figure 10(b) 
shows no indication of a pattern. The resulting regression equation is: 
ˆ 20.1 3.01 'y x  or, equivalently, ˆ 20.1 3.01y x   .  The values of 2r and es  (see the 

JMP output) indicate that a 
line is a reasonable way to 
describe the relationship 
between y and x'. To predict 
velocity of the river at a 
distance of 9 meters from 
shore, we first compute 

' 9 3x x    and then use 
the sample regression line to 
obtain a prediction of y:  

ˆ 20.1 3.01 ' 20.1 3.01(3) 29.13.y x      
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Figure 10(b) 
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More Transformations 
 
 In the previous example, transforming the x values using the square root function worked 
well. We will now consider other transformations of variables.  It is convenient to 
separate the transformations into two categories, for reasons that will become clear 
below: 

 Situations where the explanatory variable only is transformed 
 Situations where the response variable is transformed 

While there is only one linear function, and only one description of the average change in 
y per unit change in x  – constant – there are different patterns of values for nonlinear 
functions : 

 There may be a single extreme (maximum or minimum) value of y.   With 
increasing values of x, the expected values of y may rise then fall, or fall then rise. 
 

 The increases in y per unit increase in x may be smaller for small values of x, or 
the increases in y per unit increase in x may be larger for small values of x. 
 
 

 The increases may be expressed in terms of proportions of x and/or y, not in units 
of x and/or y. 
 

To help cope with this variety of ways data can be non-linear, there is a variety of 
functions we might try to fit to our data as we attempt to describe or explain the behavior 
of the data.  Some examples of elementary functions, together with their associated 
transformations of variables, are shown below in Figure 12.   
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Figure 12 – functions (with associated transformations) 
 
 
 
 
 
 
 
 
              ' logy y                                                          ' log( )x x  

 
 
 
 
 
 
 
 

          No transformation                                                    1'x x  

 
 
 
 
 
 
  

                                                                                             1'x x  

 
 
 
 
 
 
 
 
 
 
 
 
 

                  'x x                                                   ' log( )x x ;  ' logy y  

Exponential 
' log( )y y  

Logarithmic 
' log( )x x  

Quadratic 
(No transformation) 

Reciprocal 

Square root  
Power
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The power transformation is a particularly interesting transformation.  The power 
function, ,by ax is transformed to linearity by taking the logarithm (either common or 
natural) of both sides of the equation: 
 

                           

 
log( ) log( )

log( ) log log

b

b

y ax

y ax

y a b x





 

 

 
Thus, ' log( ) and ' log( )x x y y  result in a linear function, ' 'y a bx  .  What is 
interesting about the power function is that it includes raising to powers and taking roots.  
If b is a positive integer, a monomial results; if b is a fraction, such as one-half or one-
third, the result is the same as taking a square root or cube root.  In addition, if b is a 
negative integer, a reciprocal transformation is the result.   The plots shown are for 

1 1,  ,  ,  1,  2,  3, and 13 2
by x b   . 
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Table 2 gives some guidance and summarizes some of the properties of the most 
commonly used transformations.  
 
Table 2:  Commonly used transformations 
 

Transformation Mathematical 
Description 

Try This Transformation 
if you observe that… 

No transformation ŷ a bx  The change in y is constant as x 
changes. A 1-unit increase in x is 
associated with, on average, an 
increase of b in the value of y. 
 

Square root of x ŷ a b x   The change in y is not constant. A 1-
unit increase in x is associated with 
smaller increases or decreases in y 
for larger x values. 
 

Log of x* 
10ˆ log ( )y a b x   

or 
ˆ ln( )y a b x   

The change in y is not constant. A 1-
unit increase in x is associated with 
smaller increases or decreases in the 
value of y for larger x values. 
 

Reciprocal of x 1
ŷ a b

x
    
 

 
The change in y is not constant, as 
was true for the log function.  Here,  
y has a limiting value of a as x 
increases, unlike the log function. 
 

Log of y*  
(Exponential growth  
or decay) 
 
Log of y* and log of x 
(“Power” function) 

l og( )y a bx   
or 
ln( )y a bx   
 
  log( ) logy a b x   

or 

   ln lny a b x   

The change in y associated with a 1-
unit change in x is proportional to x. 
 
 
The proportional change in y 
associated with a 1-unit change in x 
is proportional to x. 
 

 
*The values of a and b in the regression equation will depend on whether log10 or ln is 
used, but the ˆ 'y s  and 2r  values will be identical.   Notice that the two “log of y” 
transformations involve transforming the response variable.   
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Figure 13: Density vs. Density 

Choosing a fit: combining the Best and the Brightest 
 
Once we reject the straight line as a plausible description of data, it is frequently the case 
that more than one of our polynomial or transformation strategies will produce a good fit 
to the data we have.  Choosing a nonlinear regression function is a matter of statistical 
judgment guided by scientific wisdom.   We want regression functions to exhibit small 
residuals and account for a large proportion of the variability in y.  This generally means 
seeking out the largest 2r ,  or 2R in the case of a polynomial function.  This is what we 
might generally term the “Best” fit.  However, the “Best-ness” is not the only game in 
town; an alternative concern is what we might call the “Brightest” fit.   By this we mean 
the fit to the data that capitalizes on the existence of a large body of scientific principles 
and theories developed over centuries of observation.  For example, the function 

21
( )

2
d t at describes the distance an object in a vacuum would fall as a function of time.  

Observations of falling objects in many different circumstances and places, and at 

different times, have etched 21
( )

2
d t at in scientific stone.   If a golf ball is dropped in 

the no-wind atmosphere of the Earth’s moon, one would expect to see a really nice 
scatterplot in the form of a parabola result.  On the other hand, if one dropped a golf ball 
on the planet Jupiter,  the golf ball would be buffeted by the slings and arrows of a wild 
geology- and wind-driven environment.   Because of this, our golf ball dropping 

experiment might very well result in data that 21
( )

2
d t at  doesn’t fit really well.  It may 

even be the case that a different function, * 31
( )

3
d t at or possibly  *( ) logd t a b t   

might fit the data better, in the sense of exhibiting the smallest residuals and a non-
patterned residual plot.   However, in such a case, picking the “Brightest” fit – the one in 
agreement with accepted scientific laws – would usually be the preferred strategy.    
 
Frequently, regression is used in the tentative creation 
of scientific laws. In cases such as these the 
investigator may reason from her knowledge of 
science and be able to reject some possible regression 
functions in favor of others.   We found an interesting 
example of scientific judgment in an experimental 
study of factors that influence population density of 
salamanders in the paper, “The relationship between 
rock density and salamander density in a mountain 
stream” (Herpetologica [1987]: 357-361).  The 
investigators created a range of habitats for 
salamanders (Desmognathus quadramaculatus) by 
placing different sized rocks and pebbles in a small 
stream in the Southern Appalachian Mountains.  Three 
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Figure 14(a):  SDensity vs. 1/RDensity 

 
Figure 14(b): Residual Plot 

 
Figure 14(c) Original scale 

months later they returned to measure the population density of the salamanders.  The 
scatterplot of their original data are shown in Figure 13.  The densities are measured in 
numbers / 1.4 square meters.   
 
Inspection of the elementary functions in Figure 12 
suggests more than one plausible function to use to fit the 
data.  The researchers chose a reciprocal regression 

function, 
1

ˆ ,y a b
x

    
 

 for two reasons: (1) it was the 

Best, and (2) it was the Brightest.  The 2r was greatest for 
the reciprocal function, which was icing on the cake.  More 
important, the reciprocal function made sense scientifically.  
The investigators felt that there would be an upper limit to 
the population density since the stream bed is a 
nonrenewable resource and the stream therefore had a limit 
in the number of salamanders that could be sustained.  This 
limit is known as the “carrying capacity” of an environment 
and is estimated by the value of the intercept, a, in the 
regression function.   The choice of a reciprocal 
transformation may seem odd to you because the reciprocal 
transformation shown above is the only one that is falling 
with increasing x values.  Remember, though, that that a 
function,  f x , is transformed into mirror images by using 

 f x  and  f x . )  

 

 After making the transformation 1'x x and fitting the 

resulting data, the best fit line was calculated using JMP.  
The best fit line, ( 2ˆ 12.37 292.6 ',  0.82y x r   ) and the 
residual plot are shown in Figures 14(a) and 14(b).   The 
scatterplot of the original data with the best fit regression 
equation superimposed is shown in Figure 14(c). 
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Here is an example of a nonlinear fit in the absence of settled scientific theory, from the 
article in “Sea-Level Rise on Eastern China’s Yangtze Delta” (Journal of Coastal 
Research [1998]: 360-366). 
 
The researchers used pollen and microfossil records in radiocarbon-dated samples of peat 
from core samples as well as archeological data to produce historic water levels in the 
Yangtze delta of China to study the pattern of the rising of sea level.   Geologic and 
hydrologic data are notorious for not having the benefit of common scientific models (i.e. 
there is no Brightest), and the researchers elected to fit an exponential model to their data 
as the Best summary of the relation between sea-level and time.  Their data are 
reproduced in the table below and are relative to the present sea-level and present time.  
The variable “Kilo-Years BP” is thousands of years before the present; the depth variable 
is the depth compared to the current sea level.  As an example, based on the 
measurements available the researchers inferred that 7,064 years ago the sea-level was 
3.2 meters below the current level.  The “Log of Depth” is the common (base 10) 
logarithm of the Depth.     A scatterplot of the Depth vs. Kilo-Years BP with a fitted 
exponential function is shown in Figure 15. 
 

Kilo- 
years 
BP 

Depth 
(m) 

Log of 
Depth 

Kilo-
Years 

BP 

Depth 
(m) 

Log of 
Depth 

Kilo-
Years 

BP 

Depth 
(m) 

Log of 
Depth 

7.064 3.2 0.5051 5.930 3.0 0.4771 4.660 1.0 0.0000 

6.680 4.0 0.6021 5.845 2.6 0.4150 4.470 1.2 0.0792 

6.670 3.8 0.5798 5.845 3.0 0.4771 4.000 2.2 0.3424 

6.670 3.5 0.5441 5.790 5.1 0.7076 3.950 3.0 0.4771 

6.600 2.8 0.4472 5.780 2.5 0.3979 3.407 1.0 0.0000 

6.580 2.0 0.3010 5.640 3.6 0.5563 2.950 3.6 0.5563 

6.510 4.1 0.6128 5.600 2.5 0.3979 2.720 1.6 0.2041 

6.500 5.1 0.7076 5.530 5.7 0.7559 2.393 1.0 0.0000 

6.365 3.5 0.5441 5.530 2.0 0.3010 2.285 0.9 -0.0458 

6.275 1.5 0.1761 5.470 1.0 0.0000 2.180 1.0 0.0000 

6.227 2.5 0.3979 5.260 3.0 0.4771 1.790 2.3 0.3617 

6.008 6.0 0.7782 5.260 1.8 0.2553 1.780 1.7 0.2304 

6.000 2.5 0.3979 5.210 2.1 0.3222 1.691 1.5 0.1761 

6.000 3.0 0.4771 4.901 2.1 0.3222 1.530 1.1 0.0414 

5.960 5.0 0.6990 4.750 1.0 0.0000 1.510 0.7 -0.1549 
 



18 
 

 
Figure 15: Sea-level vs. time 
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Figure 16(a): ' log( )y x  
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Figure 16(b): ' ln( )y x  

The scatterplot is typical of data seen when two 
variables are related by an exponential 
function.  The change in y as x increases is 
smaller for small x values than for large values 
of x.  For these data, think in changes in x of 
units of 1000 years.  Another feature common 
to exponential relations is that the variability 
about the line is greater for larger values of x 
than it is for smaller values of x.   
 
Figure 12 hints that using logarithms and 
transforming the y variable (the depth) will be 
in order.  Two standard logarithmic functions 
are commonly used for such transformations – 
the common logarithm (log base 10, denoted 
by log or 10log ) and the natural logarithm (log 

base e, usually denoted by ln, but sometimes as loge ). Either the common or natural log 

can be used; the only difference in the resulting scatterplots is the scale of the 
transformed y variable.  This can be seen in Figures 16(a) and 16(b) where the 
scatterplots of '  vs. y x for both logarithmic transformations are shown, together with the 
best fit lines.  These two scatterplots show the same pattern. 
 
The resulting regression equation using the common log transformation is 
' 0.093 0.0915y K   , or equivalently, log( ) 0.093 0.0915y K   .   For the natural log 

transformation the resulting regression equation is ' 0.215 0.2106y K   , or 

equivalently ln( ) 0.215 0.2106y K   . 
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Fitting a curve using transformations 
 
The objective of a regression analysis is usually to describe the approximate relationship 
between x and y with an equation of the form y = some function of x.  If we have 
transformed only x, fitting a least-squares line to the transformed data results in an 
equation of the desired form, for example, 
 

       ˆ 5 3 ' 5 3 ,  where 'y x x x x      
               or 

      
1 1

ˆ 4 0.2 ' 4 0.2 ,  where 'y x x
x x

     . 

 
These functions specify lines when graphed using y and 'x , and they specify curves when 
graphed using y and x, as illustrated in Figure 17 for the square root transformation. 
 

 
                                  Figure 17 
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If the y values have been transformed, after obtaining the least-squares line the 
transformation can be undone to yield an expression of the form y = some function of x 
(as opposed to 'y = some function of x).  For example, to reverse a logarithmic 

transformation ( ' log( )y y ), we can take the antilogarithm of each side of the equation.  

To reverse a square root transformation ( 'y y ), we can square both sides of the 

equation, and to reverse a reciprocal transformation (  1
'y

y
 ), we can take the reciprocal 

of each side of the equation. 
 

For the common log transformation used with the sea-level data,   ' logy y  and the 

least-squares line relating 'y and x was ' 0.093 0.0915y K   or equivalently, 

 log 0.093 0.0915y K   .  To reverse this transformation, we take the antilog of both 

sides of the equation: 
 

   log 0.093 0.091510 10y K   
 
Using properties of logs and exponents we know that 
 

  log10 y y   and    0.093 0.0915 0.093 0.091510 10 10K K    

 
Finally we get  
 

       0.093 0.0915 0.0915ˆ 10 10 0.8072 10 0.8072 1.233
KK Ky     

 
This equation can now be used to predict the y value (sea-level) for a given x (thousands 
of years ago).  For example, the predicted sea-level 2500 years ago (K = 2.5) is: 
 

      ˆ 0.8072 1.233 0.8072 1.233 0.8072 1.6934 1.3669
K K

y      
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Two really important final warnings: 
 
1.   “Back transforming” 
 
The process of transforming data, fitting a line to the transformed data, and then undoing 
the transformation to get an equation for a curved relationship between x and y usually 
results in a curve that provides a reasonable fit to the sample data, but it is not the least-
squares curve for the data.  For example, we used a transformation to fit the curve 

  0.093ˆ 10 1.233
K

y   above.  However, there may be another equation of the form 

 ˆ 10
bx

y a  that has a smaller sum of squared residuals for the original data than the one 

obtained using transformations.  Finding the least-squares estimates for a and b in an 
equation of this form is complicated.  Fortunately, the curves found using transformations 
usually provide reasonable predictions of y.  
 
 
2.   Thinking that 2r is all you need 
 
It is awfully tempting to think that one can shortcut the choice of models by looking only 
at 2r .  Hopefully our discussion of Best vs. Brightest has been sufficient warning.  
However, there is another significant error in thinking, that even in the absence of a clear 
Brightest fit one could take that shortcut.  One must also consider the “y” variable.  
Suppose you have two models:   y a bx    and  ln y a bx  . When performing the 
regression according to the least squares criterion, we minimize the sums of squares of 
residuals.  The problem with comparing these two models is that they are minimizing 

different sums of squares.   Minimizing  2
ˆi iy y and minimizing 

 2

log logi iy y are NOT the same things, and you cannot directly compare the 

resulting 2r s.   Now, if you have two models with y  or two models with log y you can 
compare them when searching for the Best, but possibly not the Brightest.  But you 
cannot do this with one model a function predicting y and one model predicting some 

 f y . 

 
 
 


