Inference Formulas & Procedures

Situation	Confidence Interval	Significance Test	Conditions
1 mean (σ known)	$\overline{x} \pm z^* \frac{\sigma}{\sqrt{n}}$	H _o : $\mu = \mu_o$ $Z = \frac{\overline{x} - \mu_o}{\frac{\sigma}{\sqrt{n}}}$	 SRS and population is normal, or n > 30
1 mean with σ unknown or 2 dependent means in matched pairs	$\overline{x} \pm t_{n-1}^* \frac{s}{\sqrt{n}}$	H _o : $\mu = \mu_o$ $t = \frac{\overline{x} - \mu_o}{\frac{s}{\sqrt{n}}}$ degrees of freedom (df) = n - 1	 SRS and population is normal, or large sample size (n ≥ 30)
2 means (independent)	$(\overline{x}_1 - \overline{x}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ (use df smaller of n ₁ -1 and n ₂ -1)	H _o : $\mu_1 = \mu_2$ $t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	SRS and population is normal, or $(n_1, n_2 \ge 30)$

Situation	Confidence Interval	Significance Test	Conditions
		$H_{o}: \theta = \theta_{o}$	
			1. SRS, and
		$\hat{p} - \theta_o$	2. pop \geq 10 times sample, and
1 proportion	$\hat{p} \pm z * \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	$z = \frac{1}{\sqrt{\frac{\theta_o(1-\theta_o)}{n}}}$	3. TOS : $n\theta_o \& n(1-\theta_o) \ge 10$
	$(\hat{p}_1 - \hat{p}_2) \pm$	$H_{0}: p_{1} = p_{2}$	1. SRS, and
	* $\hat{p}_1(1-\hat{p}_1)$ $\hat{p}_2(1-\hat{p}_2)$		2. pop \geq 10 times sample, and
2 proportions	$z \sqrt{\frac{n_1 (n_1)}{n_1} + \frac{n_2 (n_2)}{n_2}}$	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_c(1 - \hat{p}_c)(\frac{1}{n_1} + \frac{1}{n_2})}}$	3. 108 : $n_1 \hat{p}_c > 10, n_1 (1 - \hat{p}_c) > 10$ $n_2 \hat{p}_c > 10, n_2 (1 - \hat{p}_c) > 10$

Decisions:

- Step 1: Decide if it is a test of means (μ) or a test of proportions (ρ) .
- Step 2: If it is a test of means, decide
 - a) is it one set of data (1 mean) or two sets of data (2 means)
 - b) If it is a one mean test, decide whether σ (the population st. deviation) is known
 - i) if σ is known, you are using a z test
 - ii) if σ is not known you will be using a *t*-test
 - c) if it is a two means test, it is automatically a t test

Step 3: If it is a test of proportions, decide whether it is one proportion or two proportions

a) no matter which, you are using a z test

Hypotheses:

 H_a - usually what you are asked to investigate: Ex: $H_a: \mu < 16$ or $H_a: p > .75$ or $H_a: \mu \neq 20$ H_o - the opposite of H_a Ex: $H_o: \mu \ge 16$ or $H_o: p \le .75$ or $H_o: \mu = 20$

Procedures:

<u>z tests</u>

- 1) Calculate *z* statistic using the correct formula
- 2) Find your *p*-value by

i) finding up the correct value by looking up your z statistic from your chart.

ii) subtracting it from .5000

iii) if it is a two-tailed test – double it

3) Compare your *p*-value to the given value of α . If not given, use $\alpha = .05$

i) If *p*-value $< \alpha$, reject H_0 and accept H_a

ii) if p-value > α , reject H_a and say that there is not enough evidence to support H_a

4) Make your conclusion in English.

<u>t tests</u>

- 1) Calculate *t* statistic using the correct formula
- 2) Find your *p*-value by
 - i) Using the correct row in the *t*-chart based on the degrees of freedom (n-1)
 - ii) finding the approximate place that your *t*-statistic would fall

iii) read up to find the approximate *p*-value

iv) if it is a two-tailed test - double the value you just found

3) Compare your *p*-value to the given value of α . If not given, use $\alpha = .05$

i) If *p*-value $< \alpha$, reject H_0 and accept H_a

ii) if *p*-value $>\alpha$, reject H_a and say that there is not enough evidence to support H_a 4) Make your conclusion in English.