ALGEBRA 2 INDIVIDUAL TEST

REGIONAL 1999

- 1. If $f(x) = 1 + \frac{1}{x}$, find f(f(f(x))).

 - a) $\frac{2x+1}{x+1}$ b) $\frac{3x+2}{2x+1}$ c) $\frac{x+1}{x}$ d) $\frac{x+1}{3x+2}$
- e) NOTA
- If $f(x) = 3x^2 + 6x + 1$, what is the minimum value taken on by the function g(x) = f(3-x)?

in the second of the second of

- a) -2 b) 0 c) 4

- d) 8 e) NOTA
- what is the sum of the first 80 positive odd integers subtracted from the first 80 positive even integers?
 - a) 20

The state of the s

- b) 40 c) 80 d) 100 e) NOTA
- The points (1,1), (9,1), (9,5), (5,2), (2,6) and (0,4) are connected in order with the last point connected to the first, forming a polygonal region. What is the area of this region? 4.

The second of th

- a) 25½ b) 32 c) 44¼ d) 64 e) NOTA
- If cats consider one rat worth 3 mice, a squirrel worth as much as 5. one rat and one mouse, and five chipmunks worth 3 rats, how many chipmunks would a cat "pay" for 97 mice and 32 squirrels?
 - a) 102
- b) 125 c) 129
- d) 134
- e) NOTA
- 6. If $(\log_3 x)(\log_2 x)(\log_{2x} y) = \log_x x^2$, find y. a) 2 b) 3 c) 4 d) 9 e) NOTA

7.	is the third term?						
	a) $\frac{b}{2a}$	b) $\frac{b^2}{2a}$	c)	$\frac{b}{4a}$	$d) \frac{b^2}{4a}$	e) NOTA	
				į.			
8.	A club found the for each minor Find x.	hat it coul either by	d achie inducti	ve a memb ng 24 adu	ership ratio of Its or expelling	2 adults g x minors.	
٠	a) 12	b) 24		36	d) 48	e) NOTA	
<i>(</i>)		5 - F.	. !			8 8 2	
9.	A merchant boud bought twice a a profit of 200 Find k.	ght some or s many oran %, he sold	anges a ges at them al	t the rat the rate 1 at the	e of 3 for 16 co of 4 for 21 cen rate of 3 for k	ents. He ts. To make cents.	
	a) 19	b) 21	C.) 24	d) 25	e) NOTA	
		A TOTAL STATE OF THE STATE OF T				1.49	
10.	If $\log_{10} 3 = a$ ar	$\log_{10} 7 = b$,	find th	ne value d	of log,9 in terms	s of a and b	
	a) $\frac{2b}{a}$	b) $2b-a$	C	$\frac{2a}{b}$	d) 2a-b	e) NOTA	
				·			
11.	(Assume $i = \sqrt{-}$	1) (1) (2) (3) (4) (4)		II) <i>iz</i> III) ($\overline{3i} = x - 3i$ $= -i\overline{z}$ $(2+i)^2 = \overline{3-4i}$ true d) None t	rue e) NOTA	
12.	Jack and Jill came tumbling	i went up ti g down at ti	he hill he rate	at the r	ate of 8 units/r ts/sec. What wa	nin. They as their	

e) NOTA

13.		the following 0 , if $i = \sqrt{-1}$		ments is	<u>not</u> tr	ue for the	equation
а	ı) The sum	of the roots	s is 2.	b) The d	iscriminant	is 9.
c	:) The roo	ts are imagi	nary.	d) The	roots a	are complex	numbers.
e	e) NOTA						
14	Find all	x such that	Ox-[2x-]	2 – 0			
					2	45 1 6	> =
a) NO SOIN.	. D) log	, 6	C) log ₆	3	d) $\log_9 6$	e) NOTA
		e e e e e e e e e e e e e e e e e e e				top of the second	
15.	Solve for	$r x: \frac{1}{x} + x \le -2$		٠		en e	and the second second
a) x < -1	b) -1	< x < 1	c) x < 1	d) x	< 0 e) NOTA
16.	Find the	sum of the i	nfinite	series	$1 - \frac{1}{2} - \frac{1}{4} +$	$\frac{1}{8} - \frac{1}{16} - \frac{1}{32} + \frac{1}{6}$	1/54 - 1/128
	a) 1	b) e	c) n	•			e) NOTA
17.	If fence enclose a feet?	posts are 2 a rectangula:	feet apa field w	rt, how hich ha	many po s length	osts are ne n 20 feet a	eded to and width 12
	a) 32	b) 34	c) 3	6	d) 4	10	e) NOTA
18.	A parabo point 8 t the arch	lic arch has feet from the (in feet)?	a span c center	of 24 fe of the	et. Its span. V	s height is What is the	s 18 feet at a e height of
	a) 27	b) 30.5	c) 3	32.4	d) 3	36	e) NOTA

19.	If $f(x) = x^2 + x - 1$	for $x \ge -2$ and $g(x) = x^2 - x$	for $x < 5$, find the domain	OF FOOT
TJ.	$\pm i f(x) = x + x - 1$	$101 \times 2^{-2} \text{anag}(x) = x - x$	Total S, Triba the domain	org∘j.

a)
$$-3 < x < 2$$
 b) $-3 < x < 2$ c) $-2 < x < 2$

b)
$$-3 < x < 2$$

c)
$$-2 < x < 2$$

d)
$$-2 \le x < 2$$

20. Given
$$f(1-x)+(1-x)f(x)=5$$
, find $f(5)$.

21. A bug starts at a point
$$(x,y)$$
 on the graph of $4x^2 + 9y^2 = 36$. It walks in a straight line to the point $(-\sqrt{5},0)$, then in a straight line to $(\sqrt{5},0)$, then in a straight line to its original starting point. How far has the bug walked?

a)
$$6+2\sqrt{5}$$

b)
$$8 + 2\sqrt{5}$$

c)
$$10 + 2\sqrt{5}$$

(d)
$$12 + 2\sqrt{5}$$

- Given a geometric sequence with the first term and common ratio 22. both not 0, and an arithmetic sequence with the first term 0, a third sequence 1,1,2,... is formed by adding the corresponding terms of the 2 given sequences. Find the sum of the first 10 terms of the third sequence.
 - a) 824
- c) 1023

23. Find
$$x^4 + \frac{1}{x^4}$$
 if $x - \frac{1}{x} = 5$.

- a) 731 b) 729
- c) 727

