Standard Deviation, Standard Ervor, and Student’s t The Road to Student’s t

Demo 18: The Road to Student’s t

Using standard error as the scale for measuring how far a sample mean is from the
true mean » How these quantities are not normally distributed; in fact they follow a
t-distribution

Where have the fast two demos led us? Why do we care about this difference between standard deviation and
standard error? Here's what we have seen:

< Standard deviation measures the spread in the sample and therefore reflects the spread in the population.

< The standard error of the mean measures the spread of a sampling distribution and is therefore a measure of
how well we know the mean of the population if we have only a sample.

'This second point sounds obvious, but it isn’t. You can remember sampling distribution this way:

The SE—the standard deviation divided by VN —is the standard deviation of the sampling distribution, The
standard deviation is a measure of how far a given data value is likely to be from the mean. So, if you take a sample
and compute its mean, how far is that mean likely to be from the true mean of the population? The standard error.

That's what we said in Demo 17, “What Is Standard Error, Really?” Now we look more deeply and uncover one of
the great subtleties of statistics.
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> Open Road to t.ftm. It will look somethinglike ™21 (called xbar), with the relevant® normal curve
the illustration. superimposed. It looks pretty normal,

This is based on What Is SE.ftm, if it looks familiar.

. "N¥e're using the data’s mean and SD to define a normal carve, We
We see the Sample collection (three cases, normally 5

could have used slider parameters in our formula, for example,

distributed, sliders for mu and sigma, plus a graph) normalDensity(x, mu, sigma / \/coms?( ) ), but using the data
and irs derived Measures from Sample collection. works well here.
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> To show that it wasn't a fluke, press the Collect
More Measures button on the upper-middle
collection, and generate a new set of 500 xbars,

We can predict the shape of the sampling distribution
if we sample repeatedly. We take the standard

deviation, divide by VN, and use that as the standard
deviation for our normal distribution, If we know
about the Central Limic Theorem (Demo 27), we even
know it’s normal.

A Longer Explanation Than Usual

Here comes the hard part, conceprually: In real life, we
only get the one sample, and we don’t know what the
true mean and standard deviation are. When we get
that sample, we'd like to know how far that sample is
likely to be from the mean.

We're tempted to say, “Let’s take the sample standard
deviation and divide it by JIN to get a standard
error. Now we can reverse the traditional logic of the
standard error, like this: Just as there’s a 95% chance
that the sample mean will be within two standard
errors of the true mean, we have 95% confidence that
the true mean is within two standard errors of the

sample mean.”

We'd be wrong. That symmetrical logic breaks down,
as we will see. In the demo, we'll pretend for a moment
we don’t know “the truth” when we draw the sample.
We pull three numbers X from the distribution and
calculate the mean, xbar. We want to get some idea
how far that is likely to be from the true mean.

Here is the crux of the matrer: It’s not fair to calculate
that distance in absolute units. If we really don’t know
how far it is to the true mean, that answer should

not depend on the scale—for example, the system

of units—we measure with, But we can express the
distance in terms of the spread of our sample (or spread
of the population, but we don’t know that). We could
use the standard deviation of our sample as a unit of
measurement, but since we know that the distance
from the sample mean to the true mean scales like
standard error (not standard deviation), let’s use that.
So far, we've matched the tempting logic above.
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Then imagine that we're told the truth, so we can see
how far oft we really are. Now, instead of plotting the
errors in absolute units, we'll make the experiment
independent of the particular scale and calculate the
errors in units of sample standard errors. And plot them.

Note: This trick, scaling the data this way, uses
dimensionless quantities. If the original measurements
were in centimeters, say, this would give us an
analysis that had no units at all. That way it would
scale properly even when we changed systems of

measurement.

>  First, we have to calculate this dimensionless
“difference.” Double-click the Sample collection
(not Measures from Sample) to open its
inspecror.

>  Click the Measures tab to open that panel.
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= Make a <new> measure; call it error.

> Double-click error’s formula box (to the right) to
open the formula editor.

> Enter xbar / SE and press OK to close the editor
(these attributes are both defined in this same
panel, so it’s OK to use their names). Note: We
assumed mu = 0, so xbar /s the deviation.

>  Close the inspector to save screen space.

We've defined error to be a dimensionless number—

the distance from the sample mean (xbar) to the true

mean but in units of standard errors. Now let’s see its

distribution:

& Press the Collect More Measures button on
the measures collection. Fathom collects 500 new
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xbars. Where are the errors? We need to tell
Fathom to plot them.

» Double-click the Measures from Sample
collection (the open box, not its name) to open its
inspector.

> Click the Cases tab to open that panel.

>  Drag the name of the attribute @rror from the
inspector to the horizontal axis of the graph,
replacing Xbar. The graph updates, and we see the
distribution of this new acrriburte,

Measures from Sample

012

o o
o =
& =)

Density of error
[=]
&

— ey r

-20 1] 20 40 60
error

— Density of error == normalDensity (x , mean( ), stdDeve )}

t Itlooks bizarre, like the graph above. We need to
rescale the axes and change the bin widch. You can
do it by hand, or double-click the graph and set the
numbers in the graph’s inspector. Use a binWidth
of 0.5 and a range (xLower to xUpper) of about
-5to+5.
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'The distribution does not match the curve—a normal
curve with the same mean and standard deviation as
the darta.” So there must be some really far-out points

*We could simply have plotted normalDensity(x) to get a
standard normal curve, which looks {at first glance} much closer
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to make the standard deviation so large. You probably
saw them before you rescaled.

At any rate, we have found that even though the xbars
are noymally distributed, these evrov quantities are not
(at least with » = 3).

Ifit’s not normal, what is it? Let’s see:

> Click the graph once to select it.

+  Choose Plot Function {rom the Graph menu.

The formula editor opens.

>  Enter tDensity(x, N — 1). Press OK to close the
editor and show the graph.*

It should match! This distribution was Gosset’s great
discovery, what we now call Student’s /-distribution.
What we called error we could just as well have called 2.
To cmphasize:
X—x
r= ¢

SE

where x, is a value you're comparing cthe sample to.

Of course, in this case we needed to know the true
mean, but the symmetrical logic thar failed us earlier
now holds up. The point is that if you measure these
differences in terms of standard crrors, you don’t need
to know the population spread—because it’s all done
using the scale of the sample standard error.

Measuring in terms of spread also helps us clarify this
important distinction:

«» A difference measured in units of sample standard
deviation (effect size) is an indication of how
meaningful the difference is. That is, it says how
much distributions overlap, or how far apart they
are in terms of their spreads.

< A difference measured in units of standard error
of the mean {Student’s #) is an indication of how
statistically significant the difference is. That is,

1o this distribution. It is just as unsuitable, however, because of the
data our in the tails. With the curve we have drawn, the difference
between the histogram and the funcrion is more dramatic.

“Why n — 12 Tr’s a parameter of the distribution called the degrees
of freedom. The -1 has to do with the idea that once we specify the
mean, we can freely choose only # — 1 data values—the last one
is determined. The main point, however, is that the distribution
actually has a different shape for differenc values of 7.
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it helps us understand how likely it is that the
difference occurred by chance.

Extensions

These extensions are worth some time and thoughe if

you're studying the z-distribution, #-tests, or confidence

intervals based on ¢,

=
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Change the error histogram to a normal quantile
plot. What does that graph tell you? (Note that
when you change back, you may have to remind
Fathom to display a density histogram. Choose
Scale | Density from the Graph menu.)

Change the value of sigma {and re-collect
measures) to see that the error distribution

(that is, #) stays the same even when the population
spread changes.

Change the value of mu (and re-collect measures)
to see the distribution change. That's because

our definition of error assumes that the true
population mean is zero (it should have been
(xbar — mu) / SE). What we get is a noncentral
¢-distribution.

Add cases to the Sample collection. See how the
graphs change as sample size changes.

Challenges

1

Look back at the histogram of error. Maybe it
is normal, but the normal curve just needs to be
rescaled to fit the graph. After all, it Jooks about
the right shape-—it’s just that the SD is too big,
Try making a slider for a parameter to rescale the
SD, and see what you find. (One suggestion for a
formula:

normalDensity(x, mean( ), stdDev( )/ K)

where K is the slider.) It fits pretty well—what
is it about the graph that says it does not fit
well enough?

One way to characterize this new distribution is
that it’s kind of normal except that ic has longer
tails. Why is that so? What do you suppose the tail
samples tend to have in common? What about the
ones in the hump? (Demo 19, “A Close Look at
the #-Statistic,” might help you look at this.)

Why didn’t we just measure the difference from
the true mean in standard deviations instead of
standard errors? It would be dimensionless—
independent of the original units—and in a scale
that depended only on the sample we got. Try it,
see what happens, and explain your results. ]

We made this statement earlier: “Just as there’s a
95% chance that the sample mean will be within
two standard errors of the true mean, we have
95% confidence that the true mean is within two
standard errors of the sample mean.” We claimed
that this statement (in its context) was wrong—or
at least misleading. What's wrong with it?
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