Javadoc Tool

How to Write Doc Comments for the Javadoc Tool

Format of a Doc Comment

A doc comment is written in HTML and must precede a class, field, constructor or method declaration. It is made up of two parts -- a description followed by block tags. In this example, the block tags are @param, @return, and @see.

	Example

/**

 * Returns an Image object that can then be painted on the screen.

 * The url argument must specify an absolute {@link URL}. The name

 * argument is a specifier that is relative to the URL argument.

 * <p>

 * This method always returns immediately, whether or not the

 * image exists. When this applet attempts to draw the image on

 * the screen, the data will be loaded. The graphics primitives

 * that draw the image will incrementally paint on the screen.

 *

 * @param url an absolute URL giving the base location of the image

 * @param name the location of the image, relative to the url argument

 * @return the image at the specified URL

 * @see Image

 */

 public Image getImage(URL url, String name) {

try {

 return getImage(new URL(url, name));

} catch (MalformedURLException e) {

 return null;

}

 }

Notes:

· The resulting HTML from running Javadoc is shown below

· Each line above is indented to align with the code below the comment.

· The first line contains the begin-comment delimiter (/**).

· Starting with Javadoc 1.4, the leading asterisks are optional.

· Write the first sentence as a short summary of the method, as Javadoc automatically places it in the method summary table (and index).

· Notice the inline tag {@link URL}, which converts to an HTML hyperlink pointing to the documentation for the URL class. This inline tag can be used anywhere that a comment can be written, such as in the text following block tags.

· If you have more than one paragraph in the doc comment, separate the paragraphs with a <p> paragraph tag, as shown.

· Insert a blank comment line between the description and the list of tags, as shown.

· The first line that begins with an "@" character ends the description. There is only one description block per doc comment; you cannot continue the description following block tags.

· The last line contains the end-comment delimiter (*/) Note that unlike the begin-comment delimiter, the end-comment contains only a single asterisk.

Here is what the previous example would look like after running the Javadoc tool:

	getImage

public Image getImage(URL url,

 String name)

Returns an Image object that can then be painted on the screen. The url argument must specify an absolute URL. The name argument is a specifier that is relative to the url argument.

This method always returns immediately, whether or not the image exists. When this applet attempts to draw the image on the screen, the data will be loaded. The graphics primitives that draw the image will incrementally paint on the screen.

Parameters:

url - an absolute URL giving the base location of the image

name - the location of the image, relative to the url argument

Returns:

the image at the specified URL

See Also:

Image

Descriptions

First Sentence
The first sentence of each doc comment should be a summary sentence, containing a concise but complete description of the API item. This means the first sentence of each member, class, interface or package description. The Javadoc tool copies this first sentence to the appropriate member, class/interface or package summary. This makes it important to write crisp and informative initial sentences that can stand on their own.

This sentence ends at the first period that is followed by a blank, tab, or line terminator, or at the first tag (as defined below). For example, this first sentence ends at "Prof.":

 /**

 * This is a simulation of Prof. Knuth's MIX computer.

 */

Automatic re-use of method comments
You can avoid re-typing doc comments by being aware of how the Javadoc tool duplicates (inherits) comments for methods that override or implement other methods. This occurs in three cases:

· When a method in a class overrides a method in a superclass

· When a method in an interface overrides a method in a superinterface

· When a method in a class implements a method in an interface

In the first two cases, if a method m() overrides another method, The Javadoc tool will generate a subheading "Overrides" in the documentation for m(), with a link to the method it is overriding.

In the third case, if a method m() in a given class implements a method in an interface, the Javadoc tool will generate a subheading "Specified by" in the documentation for m(), with a link to the method it is implementing.

In all three of these cases, if the method m() contains no doc comments or tags, the Javadoc tool will also copy the text of the method it is overriding or implementing to the generated documentation for m(). So if the documentation of the overridden or implemented method is sufficient, you do not need to add documentation for m(). If you add any documentation comment or tag to m(), the "Overrides" or "Specified by" subheading and link will still appear, but no text will be copied.

A Style Guide

The following are useful tips and conventions for writing descriptions in doc comments.

· Use <code> style for keywords and names.
Keywords and names are offset by <code>...</code> when mentioned in a description. This includes:

· Java keywords

· package names

· class names

· method names

· interface names

· field names

· argument names

· code examples

· Add description beyond the API name. The best API names are "self-documenting", meaning they tell you basically what the API does. If the doc comment merely repeats the API name in sentence form, it is not providing more information. For example, if method description uses only the words that appear in the method name, then it is adding nothing at all to what you could infer. The ideal comment goes beyond those words and should always reward you with some bit of information that was not immediately obvious from the API name.

Tag Conventions

Order of Tags (ones we will use)
Include tags in the following order:

* @author (classes and interfaces only, required)

* @version (classes and interfaces only, required. See footnote 1)

* @param (methods and constructors only)

* @return (methods only)

* @exception (@throws is a synonym added in Javadoc 1.2)

Ordering Multiple Tags
We employ the following conventions when a tag appears more than once in a documentation comment. If desired, groups of tags, such as multiple @see tags, can be separated from the other tags by a blank line with a single asterisk.

Multiple @author tags should be listed in chronological order, with the creator of the class listed at the top.

Multiple @param tags should be listed in argument-declaration order. This makes it easier to visually match the list to the declaration.

Multiple @throws tags (also known as @exception) should be listed alphabetically by the exception names.

Required Tags
An @param tag is "required" (by convention) for every parameter, even when the description is obvious. The @return tag is required for every method that returns something other than void, even if it is redundant with the method description. (Whenever possible, find something non-redundant (ideally, more specific) to use for the tag comment.)

These principles expedite automated searches and automated processing. Frequently, too, the effort to avoid redundancy pays off in extra clarity.

Tag Comments
As a reminder, the fundamental use of these tags is described on the Javadoc Reference page. Java Software generally uses the following additional guidelines to create comments for each tag:

@author (reference page)

You can provide one @author tag, multiple @author tags, or no @author tags

@version (reference page)

The Java Software convention for the argument to the @version tag is the SCCS string "%I%, %G%", which converts to something like "1.39, 02/28/97" (mm/dd/yy) when the file is checked out of SCCS.

@param (reference page)

The @param tag is followed by the name (not data type) of the parameter, followed by a description of the parameter. By convention, the first noun in the description is the data type of the parameter. (Articles like "a", "an", and "the" can precede the noun.) An exception is made for the primitive int, where the data type is usually omitted. Additional spaces can be inserted between the name and description so that the descriptions line up in a block. Dashes or other punctuation should not be inserted before the description, as the Javadoc tool inserts one dash.

Parameter names are lowercase by convention. The data type starts with a lowercase letter to indicate an object rather than a class. The description begins with a lowercase letter if it is a phrase (contains no verb), or an uppercase letter if it is a sentence. End the phrase with a period only if another phrase or sentence follows it.

Example:

 * @param ch the character to be tested

 * @param observer the image observer to be notified

Do not bracket the name of the parameter after the @param tag with <code>...</code> since Javadoc 1.2 and later automatically do this. (Beginning with 1.4, the name cannot contain any HTML, as Javadoc compares the @param name to the name that appears in the signature and emits a warning if there is any difference.)

When writing the comments themselves, in general, start with a phrase and follow it with sentences if they are needed.

· When writing a phrase, do not capitalize and do not end with a period:
 @param x the x-coordinate, measured in pixels
· When writing a phrase followed by a sentence, do not capitalize the phrase, but end it with a period to distinguish it from the start of the next sentence:
 @param x the x-coordinate. Measured in pixels.
· If you prefer starting with a sentence, capitalize it and end it with a period:
 @param x Specifies the x-coordinate, measured in pixels.
· When writing multiple sentences, follow normal sentence rules:
 @param x Specifies the x-coordinate. Measured in pixels.
@return (reference page)

Omit @return for methods that return void and for constructors; include it for all other methods, even if its content is entirely redundant with the method description. Having an explicit @return tag makes it easier for someone to find the return value quickly. Whenever possible, supply return values for special cases (such as specifying the value returned when an out-of-bounds argument is supplied).

Use the same capitalization and punctuation as you used in @param.

@throws (@exception was the original tag) (reference page)

A @throws tag should be included for any checked exceptions (declared in the throws clause), as illustrated below, and also for any unchecked exceptions that the caller might reasonably want to catch, with the exception of NullPointerException. Errors should not be documented as they are unpredictable. For more details, please see Documenting Exceptions with the @throws Tag.

/**

 * @throws IOException If an input or output

 * exception occurred

 */

public void f() throws IOException {

 // body

}

See the Exceptions chapter of the Java Language Specification, Second Edition for more on exceptions. Also see order of multiple @throws tags.

Good programming practice dictates that code should never make use of default constructors in public APIs: All constructors should be explicit.
Documenting Exceptions with @throws Tag

NOTE - The tags @throws and @exception are synonyms.

[image: image1.png]

[image: image2.png]

[image: image3][image: image4][image: image5][image: image6][image: image7][image: image8][image: image9][image: image10][image: image11][image: image12][image: image13][image: image14][image: image15][image: image16][image: image17][image: image18][image: image19][image: image20][image: image21][image: image22][image: image23][image: image24][image: image25][image: image26][image: image27][image: image28][image: image29][image: image30][image: image31][image: image32][image: image33][image: image34][image: image35][image: image36][image: image37][image: image38][image: image39][image: image40][image: image41][image: image42][image: image43][image: image44][image: image45][image: image46][image: image47][image: image48][image: image49][image: image50][image: image51][image: image52][image: image53][image: image54][image: image55][image: image56][image: image57][image: image58][image: image59][image: image60][image: image61][image: image62][image: image63][image: image64][image: image65][image: image66][image: image67][image: image68][image: image69][image: image70][image: image71][image: image72][image: image73][image: image74][image: image75][image: image76][image: image77][image: image78][image: image79][image: image80][image: image81][image: image82][image: image83][image: image84][image: image85][image: image86][image: image87][image: image88][image: image89][image: image90][image: image91][image: image92][image: image93][image: image94][image: image95][image: image96][image: image97][image: image98][image: image99][image: image100][image: image101][image: image102][image: image103][image: image104][image: image105][image: image106][image: image107][image: image108][image: image109][image: image110][image: image111][image: image112][image: image113][image: image114][image: image115][image: image116][image: image117][image: image118][image: image119][image: image120][image: image121][image: image122][image: image123][image: image124][image: image125][image: image126][image: image127][image: image128][image: image129][image: image130][image: image131][image: image132][image: image133][image: image134][image: image135][image: image136][image: image137][image: image138][image: image139][image: image140][image: image141][image: image142][image: image143][image: image144][image: image145][image: image146][image: image147][image: image148][image: image149][image: image150][image: image151]

